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Abstract
In the present paper, the interatomic interaction between atoms in magnesium
is calculated and the phonon dispersion relations for along the major symmetry
directions, T, T′, �, and �, in this metal are computed by use of a method
different from the traditional ones. Instead of being fitted using the elastic
constants or determined from the phonon frequencies at some special points
in the first Brillouin zone, the force constants are directly calculated using the
calculated potential, which is obtained from the cohesive energy by use of
the Möbius theorem of number theory. This calculated interaction does not
have any of the adjustable parameters that are present in the previous model
potentials. The calculated phonon dispersions are compared with experiments
and good agreement found.

1. Introduction

Up to now it has been hard to deal with large systems in condensed matter by use of first-
principles methods. Therefore, the atomic force models are still useful for studying properties
of these systems. In these models two problems are central. One of them is the interatomic
interaction and the other is the validity of the description of this interaction. In the present
work, we want to deduce the interatomic interaction in magnesium and test its correctness
using the phonon dispersion relations of this metal.

The lattice of magnesium has hcp structure. It is well known that there are a lot of materials
with this structure (shown in figure 1), but most of them do not have the ideal value of the
ratio c/a = √

8/3 � 1.633. However, magnesium has a ratio c/a = 1.623, which is very
close to the ideal one, and has therefore attracted much interest. In fact, a lot of experimental
measurements and theoretical analyses of the phonon dispersions in this metal have already
appeared.

The phonon dispersions in magnesium have been measured by means of the inelastic
scattering of neutrons [1, 2]. In particular, two experimental studies that went into more detail
have been conducted: one by Squires [3] and the other by Pynn and Squires [4].
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Figure 1. The hcp structure of a crystal. The primitive cell has a = b, with an included angle of
120◦. The c-axis is normal to the plane of a and b, and c = √

8/3a. There are two atoms in the
cell. One is at the origin and the other at �r = 2

3 �a + 1
3
�b + 1

2 �c.

For the theoretical studies, there are two ways that can be followed. One way is that of
using first-principles methods [5–14], from which good results have been achieved in recent
years [15, 16]. But for our purposes, we are interested in the other way: that of using the
force model methods. Many such models have been proposed, such as the tensor force model
[17–19], the central-force model (S–G model) [20], the axially symmetrical model (AS model)
[21], and so on [2, 22, 23]. In these models the interatomic interactions are unknown and are
introduced as some force constants, which are deduced either from elastic constants or from the
phonon frequencies at some special points in the first Brillouin zone, or from both. Meanwhile,
if an interatomic potential is given, such as an empirical one, its validity can be tested using
these models.

In the present paper, we calculate the interatomic potential in magnesium using the Möbius
theorem of number theory [24] from the cohesive energy. In order to test the calculated
interaction, the phonon dispersions along the T, T′, �, and � directions in this metal were
computed by use of a method proposed by the author and co-workers for calculating the phonon
dispersions in fcc metals in 1993 [25]. By this method the atomic force constants and then the
phonon dispersions can be directly calculated from the interatomic interaction obtained. We
need neither to introduce any adjustable parameters nor to express the force constants in terms
of the elastic constants or the phonon frequencies at some special points in the first Brillouin
zone. In section 2, the cohesive energy per atom in magnesium is obtained by means of a first-
principles calculation. Then a brief outline of the Möbius transform formula is introduced in
section 3. The calculations of the force constants and the phonon dispersions are presented
and compared with experiments in section 4. Finally, we draw our conclusions and discuss
the results in section 5.
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2. The cohesive energy of magnesium

Using the LAPW method [26–28], we calculated the cohesive energy E(a) per atom for crystal
magnesium, which has a hcp lattice with two atoms in the unit cell. In the calculation, 20 points
in the irreducible Brillouin zone of the unit cell are employed. The potential is assumed to
be of muffin-tin shape and spherically symmetric inside the muffin-tin sphere. Outside the
sphere, no shape approximations for the potential are made for the interstitial region. In the
result, eight points are calculated for the cohesive energy E(a). Its argument a is the lattice
constant and is taken as a variable. We found that the calculated cohesive energy E(a) can be
fitted by the Morse potential:

E(a) = E0(e
−2α(a−a0) − 2e−α(a−a0))/atom (1)

with the parameters E0 = 1.5123 eV, α = 1.2196 Å−1, and a0 = 3.1031 Å. In this case, E0

and a0 are the cohesive energy and the lattice constant for the equilibrium configuration of the
crystal respectively. The experimental values are E0exp = 1.51 eV and a0exp = 3.21 Å [29].
The calculated values agree well with the experimental data.

3. The Möbius transform formula for hcp crystal and the interatomic interaction in
magnesium

In 1992, Chen and Ren [30] proposed a method by which the pair potential between atoms
could be obtained from the cohesive energy using the Möbius transform formula based on
the Möbius theorem of number theory [24]. In their paper they gave the Möbius transform
formulae for fcc and bcc structures. For hcp structure they only discussed a two-dimensional
model. Recently, the author and a co-worker [31] gave a Möbius transform formula for the real
three-dimensional hcp structure and by means of this formula the pair potential between atoms
in magnesium was calculated from an empirical expression for the cohesive energy. Here we
will give a brief outline of the derivation of this formula, as follows.

In the two-body interaction approximation, the cohesive energy per atom in a crystal can
be expressed as

E(a) = 1

2

∑
| �R|	=0

φ(| �R|) (2)

where φ is the two-body interaction, i.e. the pair potential, between atoms and | �R| the distance
of an atom away from the one at the origin. For the hcp lattice E(a) can be written as

E(a) =
7∑

i=1

Ei (3)

where

E1 = 3
∞∑
n=1

φ(na) (4)

is the contribution to the cohesive energy from atoms which are located on the six symmetrical
axes on the coordinate plane (see figure 1). In equation (4), a is the lattice constant, i.e. the
distance of the first-nearest-neighbour atom away from the origin, and φ is the pair potential.

E2 =
∞∑
n=1

φ

(
n

√
8

3
a

)
(5)
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comes from the contribution of atoms located on the c-axis (see figure 1). In this equation, c
is the distance between the origin and the nearest-neighbour atom on this axis.

E3 = 3
∞∑

m,n=1

φ(
√
m2 + n2 + mna) (6)

is given by the atoms on the coordinate plane except those on the symmetrical axes.

E4 = 6
∞∑

m,n,l=1

φ

(√
m2 + n2 + mn +

8

3
l2a

)
(7)

is contributed by the atoms out of the coordinate plane and they are located at positions similar
to those described in relation to E3.

E5 = 6
∞∑

m,n=1

φ

(√
m2 +

8

3
n2a

)
(8)

arises from the atoms included in six symmetrical planes except the atoms on the axis.

E6 = 3
∞∑

m,n,l=1

φ

(√(
m − 2

3

)2

+

(
n − 2

3

)2

+
8

3

(
l − 1

2

)2

+

(
m − 2

3

)(
n − 2

3

)
a

)
(9)

and

E7 = 3
∞∑

m,n,l=1

φ

(√(
m − 1

3

)2

+

(
n − 1

3

)2

+
8

3

(
l − 1

2

)2

+

(
m − 1

3

)(
n − 1

3

)
a

)
(10)

are the contributions to the cohesive energy from the other atoms. It should be noted that the
ratio c/a = √

8/3 is used in these expressions, which means that these equations hold only
for the ideal hcp structure. The cohesive energy E(a) can be separated into two parts:

E(a) = E0(a) + E′(a) (11)

where

E0(a) = 6
∞∑
n=1

φ(na) +
∞∑
n=1

φ(
√

8/3na) + 3
∞∑
n=1

φ(
√

3na) +
1

2

∞∑
n=1

φ(
√

8na) (12)

and

E′ = 3
∞∑

m 	=n=1

φ(
√
m2 + n2 + mna)

+ 6
∞∑

m,n,l=1

φ(

√
m2 + n2 + mn + 8

3 l
2a) + 6

∞∑
m,n=1

φ(

√
m2 + 8

3n
2a)

+ 3
∞∑

m,n,l=1

′′
φ(

√
(m − 2

3 )
2 + (n − 2

3 )
2 + 8

3 (l − 1
2 )

2 + (m − 2
3 )(n − 2

3 )a)

+ 3
∞∑

m,n,l=1

′′′
φ(

√
(m − 1

3 )
2 + (n − 1

3 )
2 + 8

3 (l − 1
2 )

2 + (m − 1
3 )(n − 1

3 )a)

− 3
∞∑
n=1

φ(3na) − 1

2

∞∑
n=1

φ(
√

8na). (13)

Here, E0(a) contains E1, E2, the terms with m = n in E3, the terms with 2l = 3m − 1 for
m = n in E6, and the terms with 2l = 3m for m = n in E7. The last term is an additional one,
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which is used to match the Möbius transform formula. E′ includes E4, E5 and the remainders
in E3, E6, and E7. Two and three primes on the sum mean that the sums do not cover the terms
mentioned above, which have been included in E0. Two terms, one of which has been added
to the first term in E0 and the other of which appears in E0 as the last one, must be subtracted
from E′ to ensure the correctness of E(a). We define two operators T0 and T1 as follows:

E0 = T0φ (14)

and

E′ = T1φ. (15)

Then E(a) can be given in terms of φ:

E = E0 + E′ = T0φ + T1φ = (T0 + T1)φ = T0(1 + T −1
0 T1)φ. (16)

We can obtain the two-body interaction from the cohesive energy E(a) by means of an inverse
operation:

φ = (1 + T −1
0 T1)

−1T −1
0 E. (17)

We have introduced a new operator N defined as [31]

Nφ(x) = 1

6

∞∑
m,l,u=1

(−1/6)m−1(−1/2)u−1µ(l)φ[(8/3)(m−1)/23(u−1)/2lx] (18)

where µ(l) is the Möbius function [24]

µ(l) =




1 if l = 1

(−1)s if l includes s distinct primes

0 otherwise.

(19)

Equation (18) is called the Möbius transform formula of the hcp lattice. We have proved [31]
by means of the Möbius theorem of number theory [24] that (see appendix 1)

N = T −1
0 . (20)

Therefore, we can substitute N for T −1
0 in equation (17):

φ = (1 + NT1)
−1NE. (21)

Expanding equation (21) we obtain

φ = (1 − NT1 + NT1NT1 − · · ·)NE. (22)

Let

NE(a) =
∑
p

W ′
pE(s ′

pa) (23)

and

T1E(a) =
∑
q

W ′
qE(s ′

qa). (24)

Here, W ′
p, s ′

p, W ′
q , and s ′

q are some coefficients (see appendix 2). Therefore,

φ =
∑
p0

W ′
p0
E(s ′

p0
a) −

∑
p0,p1,q1

W ′
p1
W ′

q1
W ′

p0
E(s ′

p1
s ′
q1
s ′
p0
a)

+
∑

p0,p1,q1,p2,q2

W ′
p2
W ′

q2
W ′

p1
W ′

q1
W ′

p0
E(s ′

p2
s ′
q2
s ′
p1
s ′
q1
s ′
p0
a) − · · ·

=
∑
p

WpE(spa). (25)
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We first calculated the coefficients Wp and Sp, which are suitable for all materials with the hcp
lattice. Then the two-body interaction between atoms in magnesium was calculated by use
of the cohesive energy calculated in section 2. The calculated two-body interaction is plotted
in figure 2. We found that three terms in equation (22) are sufficient for the calculation. The
high-order terms can be neglected.

Figure 2. The two-body interaction, i.e. the pair potential, between atoms in magnesium.

4. The force constants and the phonon dispersions in magnesium

Using the calculated interatomic interaction, it is possible to express the total potential energy
U of the crystal as a function of the positions of all of the atoms:

U = U(�r1, �r2, . . . , �rN). (26)

Then the force constants

−
(

∂2U

∂um,n,α ∂um′,n′,α′

)
0

um,n,αum′,n′,α′ (27)

can be calculated directly in terms of the calculated total energy U . In the above expression
the subscript 0 denotes that the derivatives are evaluated at the equilibrium positions. um,n,α

is the α-component of the displacement of the nth atom in the mth unit cell.
The vibration frequencies of phonons can be obtained by solving the secular equation∣∣∣∣D

(
n n′

α α′

)
− Mnω

2δnn′δαα′

∣∣∣∣ = 0 (28)

where ω is the angular frequency of the vibration, δnn′ the Kronecker symbol, and

D

(
n n′

α α′

)
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is an element of the dynamical matrix, which is defined as

D

(
n n′

α α′

)
= −

∑
m′

[
∂2U

∂um,n,α ∂um′,n′,α′

]
0

ei�k·(�rmn−�rm′n′ ) (29)

where �k is the propagation vector and �rmn the position vector of the nth atom in the mth unit
cell. Since n can take the values 1 and 2, equation (28) in fact represents a 6 × 6 determinant.

4.1. The force constants

In the tensor force (TF) model framework [17–19] we have calculated the force constants
directly up to the third-nearest neighbours by use of equations (26) and (27). The calculated
results are listed in table 1. These force constants are equivalent to those described in the
previous work [22], but the symbols used are different. The relations between them are given
below. The symbols used in the literature [22] appear in the left-hand sides of equations and
ours in the right-hand sides. It should be noted that in our model the hcp structure is ideal, but
in [22] it is not. Therefore, the definitions of the nearest neighbours are different.

Table 1. The force constants (in units of 104 dyn cm−1).

Nearest neighbours Force constants

First α1 = 1.0599 β1 = −0.0552 γ1 = 0.2235
δ1 = 0.7811 λ1 = 0.0377 σ1 = 0.6882
ε1 = 0.3165 α′

1 = 0.4828 β ′
1 = 0.1609

γ ′
1 = 0.2628 δ′

1 = 0.4552 λ′
1 = 0.5257

Second α2 = 0.0155 β2 = −0.0328 γ2 = −0.0207
δ2 = 0.0034 λ2 = −0.0086 α′

2 = −0.0241
β ′

2 = −0.0209 γ ′
2 = −0.0171 δ′

2 = −0.0296

Third α3 = 0.0057 β3 = −0.0387

For the first-nearest neighbours [22] (first to sixth atoms),

α = 1

2
(γ1 + δ1) (30)

β = 1

2
(δ1 − γ1) (31)

γ = δ1 (32)

δ = 0. (33)

For the second-nearest neighbours [22] (seventh to twelfth atoms; in our model they are the
first-nearest neighbours),

λ = 1

2
(γ1 + λ1) (34)

σ = γ ′
1 (35)

µ = 1

2
(λ1 − γ1) (36)

ν = σ1. (37)
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For the third-nearest neighbours [22] (in our model, they are the second-nearest neighbours),

η = 1

3
(α2 − γ2) (38)

ξ = 1

3
(α2 + 2γ2) (39)

ζ = λ2 (40)

χ = ν ′
2. (41)

For the fourth-nearest neighbours [22] (in our model, they are the third-nearest neighbours),

θ = α3 (42)

ϕ = β3. (43)

4.2. The phonon dispersions

In terms of the calculated force constants, we calculated the dynamical matrix using
equation (29) and then the phonon dispersions along the principal symmetry directions T,
T′, �, and �.

4.2.1. The phonon dispersions along the � direction. For this direction the determinant in
equation (28) can be factorized into 2 × 2 and 4 × 4 determinants. We can solve the first one
analytically. The solutions give two wave branches. One of them is the transverse branch, the
frequencies of which are

Mω2 = 2

[
(2γ1 + β1 + α2 + 2γ2) + 2α3

(
1 − cos2 1

2
kzc

)]
± 2(β1 + 2γ1 + α2 + 2γ2) cos

1

2
kzc

(44)

for polarization direction �x and

Mω2 = 2

[
(2λ1 + ε1 + β2 + 2δ2) + 2α3

(
1 − cos2 1

2
kzc

)]
± 2(2λ1 + ε1 + 2δ2 + β2) cos

1

2
kzc

(45)

for polarization direction �y, respectively. The other is the longitudinal branch, the frequencies
of which are

Mω2 = 6(σ1 + λ2) + 4β3

(
1 − cos2 1

2
kzc

)
± 6(σ1 + λ2) cos

1

2
kzc. (46)

By means of equations (30)–(43) it can be easily proved that these results are in accord with the
equations in table 3(b) in reference [22]. Finally, the phonon dispersions along this direction
are plotted in figure 3.

4.2.2. The phonon dispersions along the � direction. Along this direction, equation (28)
can also be factorized into 4 × 4 and 2 × 2 determinants and the second one can also be solved
analytically. For polarization direction �x, the solutions are

Mω2 = A ±
√
D2 + D′2 (47)

where

A = 2

[
(β1 + 4γ1 + α2 + 2γ2) − 2γ1 cos

√
3

2
kya

]
(48)
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Figure 3. The calculated phonon dispersions in magnesium along the �, �, T, and T′ directions.

D = −2

[
2γ1 cos

1

2
√

3
kya + (β1 + 2γ2) cos

1√
3
kya + α2 cos

2√
3
kya

]
(49)

D′ = 2

[
2γ2 sin

1

2
√

3
kya − (β1 + 2γ2) sin

1√
3
kya + α2 sin

2√
3
kya

]
. (50)

For ky = 0,

Mω2 = A ± D =
{

0

4(β1 + 2γ1 + α2 + 2γ2).
(51)

The first solution corresponds to the transverse acoustic branch and the second one to the
transverse optical branch. Considering the relations (30)–(43), it is found that

Mω2 =
{

0

12(λ + ξ).
(52)

These are just the results from table 3(a) in the paper [22]. Similar results are obtained for the
polarization direction �z of the transverse branch and the longitudinal branch. All of the results
for the vibration modes along this direction are shown in figure 3, too.

4.2.3. The phonon dispersions along the T, T ′ directions. In these directions, equation (28)
cannot be factorized and we are not able to solve the equation analytically. In order to solve
this equation and obtain the eigenvalues, a standard computer program was used. The results
are also shown in figure 3.

5. Discussion and conclusions

Unlike the empirical expressions for the interatomic interaction, the one calculated in the
present work is based on a first-principles calculation and does not have any adjustable
parameters. The validity of this calculated interaction is tested using calculations of the phonon
dispersion relations. All of the calculated phonon dispersions along �, �, T, and T′ directions
are presented in figure 3 together, and compared with the inelastic neutron scattering data [2–4]
shown in figure 4. From figure 3 and figure 4 we can see a good agreement between theory and
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experiments. This might be the case because the spherically symmetric muffin-tin potential is
a very good approximation for close-packed (fcc and ideal-c/a hcp) materials [28]. So, our
calculated cohesive energyE(a) is a good result. The inversion procedure in the present paper is
strict mathematically. Therefore, the calculated pair potential for magnesium is close to the one
found in practice. It should be noted that we omitted the many-body interaction in equation (2)
in the inversion calculation. This is because the outer-electron configuration of magnesium
is s2s2p6s2. So, the distribution of the electron cloud is spherical and the pair potential is
dominant in the interatomic interaction. Both of the above statements are confirmed by the
calculated results for the dispersions. Of course, there are still some discrepancies, especially
for the transverse branches along the� direction. The maximum error is about 20%. This error
might arise because, although the ratio c/a of magnesium is very close to the ideal value, there
is a small difference between them. In our calculation we adopted the ideal value of

√
8/3

for the ratio c/a, which is somewhat larger than the experimental value. The larger value
of c might reduce the shear modulus and therefore the transverse frequencies. Prakash and
Joshi studied the effect of different values of the ratio c/a on the phonon frequencies in zinc,
magnesium, and beryllium [12]. They found that the calculated phonon frequency decreased
while the value of the ratio c/a increased. Their results coincide with the result given above.

Figure 4. The experimental data for the phonon dispersions for magnesium along the �, �, T, and
T′ directions [2–4]. The solid lines represent an extrapolation between data points. (This figure is
taken from Shaw and Pynn [10].)

The good agreement of the calculated phonon dispersion relations with the experiments
shows that the calculated interatomic interaction is reliable and can be adopted for studying
properties of large systems of magnesium. From the above, we know that the calculated
interatomic interaction is, in fact, a pair potential. Generally speaking, the interatomic
interactions cannot be simply described by a pair potential, and many-body interactions, for
example the three-body interaction, have to be added in equation (2).

As mentioned in the introduction, a very interesting problem, which is encountered by
scientists, is that of how to deal with various complex systems, such as a dislocation core, a
plastic deformation region, and a fracture. In these systems there is no translation symmetry
and it is hard to deal with them from first principles. Therefore, the value of the present
work goes beyond the application to magnesium, as well as to the calculation of the phonon
dispersions. In fact, we can use this method to calculate the interatomic interactions for all
materials with hcp structure, even if their c/a ratios are not ideal. Then we can use the
calculated interatomic interactions to deal with the complex systems of these materials instead
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of using empirical interactions. This procedure gives an indirect method for studying the
properties of the complex systems from first principles. Moreover, the calculated interactions
can also be used in the molecular dynamics method and a relationship between the molecular
dynamics method and first-principles method can be established.
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Appendix 1

Proof. According to equations (12), (14), and (18) in the main text, we have

NT0φ(x) = NE0 = N

∞∑
n=1

[
6φ(nx) + φ(

√
8/3nx) + 3φ(

√
3nx) +

1

2
φ(

√
8nx)

]

=
∞∑

m,u,l,n=1

(−1/6)m−1(−1/2)u−1µ(l)φ[(8/3)(m−1)/23(u−1)/2nlx]

−
∞∑

m,u,l,n=1

(−1/6)m(−1/2)u−1µ(l)φ[(8/3)m/23(u−1)/2nlx]

−
∞∑

m,u,l,n=1

(−1/6)m−1(−1/2)uµ(l)φ[(8/3)(m−1)/23u/2nlx]

+
∞∑

m,u,l,n=1

(−1/6)m(−1/2)uµ(l)φ[(8/3)m/23u/2nlx]. (A1.1)

Let m′ = m − 1; equation (A1.1) becomes

NT0φ(x) =
∞∑

m′=0,u,l,n=1

(−1/6)m
′
(−1/2)u−1µ(l)φ[(8/3)m

′/23(u−1)/2nlx]

−
∞∑

m,u,l,n=1

(−1/6)m(−1/2)u−1µ(l)φ[(8/3)m/23(u−1)/2nlx]

−
∞∑

m′=0,u,l,n=1

(−1/6)m
′
(−1/2)uµ(l)φ[(8/3)m

′/23u/2nlx]

+
∞∑

m,u,l,n=1

(−1/6)m(−1/2)uµ(l)φ[(8/3)m/23u/2nlx].

=
∞∑

u,l,n=1

(−1/2)u−1µ(l)φ(3(u−1)/2nlx) −
∞∑

u,l,n=1

(−1/2)uµ(l)φ(3u/2nlx). (A1.2)

Let u′ = u − 1; equation (A1.2) changes into

NT0φ(x) =
∞∑

u′=0,l,n=1

(−1/2)u
′
µ(l)φ(3u′/2nlx) −

∞∑
u,l,n=1

(−1/2)uµ(l)φ(3u/2nlx)

=
∞∑

l,n=1

µ(l)φ(nlx). (A1.3)



1918 M Li

In number theory, the Möbius theorem [24] states that if

F(x) =
∞∑
n=1

f (nx) (A1.4)

then

f (x) =
∞∑
l=1

µ(l)F (lx) (A1.5)

where F(x) and f (x) are real functions and
∑∞

l,n=1 |f (nlx)| converges. µ(l) is called the
Möbius function [24]. Using this theorem we can obtain

f (x) =
∞∑
l=1

µ(l)F (lx) =
∞∑
l=1

µ(l)

∞∑
n=1

f (nlx) =
∞∑

l,n=1

µ(l)f (nlx). (A1.6)

Comparing equation (A1.3) with equation (A1.6) we find

NT0φ(x) = φ(x) (A1.7)

and

N = T −1
0 . (A1.8)

Therefore, equation (20) in the text is proved.

Appendix 2

In this appendix we will show how to get the coefficients W ′
p, s ′

p, W ′
q , s ′

q , Wp, and sp in the
text. According to the definition of the operator N in equation (18) we have

NE(a) = 1

6

∞∑
m,l,u=1

(−1/6)m−1(−1/2)u−1µ(l)E[(8/3)(m−1)/23(u−1)/2la] (A2.1)

where a is the lattice constant. Expanding the summation and adding the same terms, we
will get the coefficients W ′

p and s ′
p in equation (23). In the calculation it should be noted that

the cohesive energy E decays rapidly as the argument increases. Therefore, we only need to
consider a limited number of terms in the summation. By the same procedure we can obtain
the coefficients W ′

q , s ′
q in equation (24) and Wp, sp in equation (25).
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